

Choosing to Lead:

The Race for National R&D Leadership & New Economy Jobs

Core Technology Strengths and Strategic University-Industry Alliance Opportunities

The Massachusetts Technology Road Map and Strategic Alliances Study

2004

Battelle

Nine Potential Strategic Alliance Opportunities* Identified in "Choosing to Lead"

Many of these strategic alliance opportunities cut across the ten core technology areas where Massachusetts is a national leader.

STRATEGIC ALLIANCE	CORE TECHNOLOGY FOCUS AREAS DRAWN UPON	INDUSTRIES AFFECTED	REGIONS AFFECTED
Nanoscale Device Fabrication Facilities Network	Advanced materials Sensing, Optical, Electro-mechanical Devices Life Sciences	IT Telecom Biotech Medical Devices Advanced Manufacturing	Greater Boston Northeast Pioneer Valley
Smart Materials Technology Incubator	Advanced Materials	Medical Devices Advanced Manufacturing	Greater Boston Northeast Southeast Pioneer Valley
Neuroscience Systems Biology Consortium	Life sciences Computer Sciences	Biotech Medical Devices	Central Greater Boston Pioneer Valley
Biogrid	Computer Sciences Life Sciences	IT Telecom Biotech Pharmaceuticals Health Care	Central Greater Boston Pioneer Valley
Next Generation Sensing and Imaging Testbed	Sensing, Optical, Electro-mechanical Devices Signal Processing Computer Sciences	IT Telecom Biotech Medical Devices Advanced Manufacturing	Central Greater Boston Northeast Pioneer Valley Berkshire
X-ray Laser Facility for Next Generation Imaging	Advanced Materials Genomics and Proteomics	Electronics Biotech Materials	Greater Boston Central Pioneer Valley
Integrated Communications- IT Platform for Emergency Response and Command Control	Signal Processing Computer Sciences Environmental Science	IT Telecom Defense	Central Greater Boston Southeast (ports) Pioneer Valley Berkshire Cape and Islands
Industrial Biotechnology and Clean Technologies	Advanced Materials Environmental Science	Advanced Manufacturing	Greater Boston Northeast Southeast Pioneer Valley Cape And Islands
Ocean Exploration and Management R&D Consortium	Life Sciences Environmental Science Computer Sciences Sensing, Optical, Electro-mechanical Devices	Biotech Fisheries Environmental	Greater Boston Southeast Cape And Islands

^{*}Each of these potential strategic alliance opportunities is presented in greater detail in Part II of *Choosing to Lead*.

While these opportunities are significant and promising, it should be kept in mind that **they are not exhaustive**. They demonstrate the range of opportunities available to Massachusetts and help inform approaches for realizing these opportunities. Each should be the subject of a further due diligence study to determine its feasibility, including how best to leverage existing state match funds to secure the more substantial federal and private commitments that would be required.

Massachusetts' Ranking in Ten Core Technology Focus Areas

	INDUST	RY PRESENCE	TALENT G	ENERATION	RESEARC	H EXCELLENCE
	Number of firms	Employment controlled by Massachusetts firms	Total degrees awarded, 2001	Change in degrees awarded, 1996 to 2001	Total state funding in related-university research fields	Leading institutions in total citations (top 25 in nation and reputational rankings for related fields
Advanced Materials	D 6th	⊖ 12th	▶ 7th	⊖ 36th	10th in metallurgical and materials engineering	MIT UMass Amherst Harvard
Signal Processing	e 2nd	D 8th	9th	⊖ 17th	6th in electrical engineering	MIT Harvard
Computer Sciences	end 2nd	9th	₽ 8th	⊖ 16th	6th in computer sciences	MIT Harvard UMass Amherst Boston University
Sensing, Optical and Electro- mechanical Devices	3rd	⊖ 11th	8th	⊖ 22nd	5th in mechanical engineering	MIT
Environmental Sciences	3rd	10th	8th	⊖ 38th	3rd in earth sciences	MIT Harvard
Genomics and Proteomics	e 2nd	9th	7th	⊖ 43rd	N/A	Harvard MIT Tufts UMass Worcester
Disease Research and Drug Discovery	3rd	9th	6th	⊖ 39th	N/A	Harvard/Partners Boston University Tufts UMass Worcester
Biomedical Devices and Instrumentation	2nd	● 4th	Bth	⊖ 38th	N/A	MIT Harvard
Renewable Energy	3rd	⊖ 16th	▶ 8th	⊖ 25th	N/A	MIT
Nanotech- nology* Nanotechnology fabrication*	N/A	N/A	N/A	N/A	N/A	MIT Harvard UMass Amherst

Industry presence based on CorpTech data.

Refer to the pages that follow for more detail on each of these core technology focus areas.

Talent generation based on National Center for Educational Statistics data.

Research excellence based on NSF data on university research funding, publications data from Institute for Scientific Information and reputational survey rankings from US News & World Report.

 ^{*}Nanotechnology rankings based on recent NSF funding awards under the National Nanotechnology Initiative for top institutions, FY2001–03.

ADVANCED MATERIALS

WHAT IS IT? The development of new classes of materials with unusual properties (e.g., strength, wear characteristics, and electromagnetic properties) are expected to open up a broad range of opportunities leading to next generation machines, improvements composite materials with a specific focus of working at the nanoscale level.

WHAT DOES IT MEAN FOR MASSACHUSETTS? With a strong concentration in patent and research grant activity, advanced materials is a strong technology thread across industry and universities in Massachusetts. It speaks directly to Massachusetts' long history in plastics, precision machining and textiles, and relates to the state's future as a center for innovative products and emerging industries, from fuel cells to nanoelectronics to adaptive materials (i.e., having properties to monitor health signs, adapt to weather changes, etc.).

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Electronics, medical devices, metalworking, paper converting, plastics, textiles and apparel

EXAMPLES OF INDUSTRY LEADERS:

Cabot Corporation

General Electric

Gillette

Spalding Sports

Nypro

Saint-Gobain

UNIVERSITY LEADERS:

Harvard

M.I.T.

Northeastern

Tufts

UMass Amherst

UMass Lowell

WPI

KEY INDUSTRY CLUSTERS:	EXAMPLES OF TECHNOLOGY ACTIVITIES:
Electronics	Coatings and multi-layer depositions Carbon nanotubes
Medical devices	Biomaterials
Metalworking	Advanced alloys Near net-shape light metals
Paper converting	Coatings and multi-layer depositions
Plastics	Polymer synthesis Processing polymers at nanoscale
Textiles and apparel	Novel material properties for fibers

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Illinois, Massachusetts, Michigan, New York, Ohio, Pennsylvania, Texas

Talent Generation

Top ten states in total degrees awarded, 2002

1. California

Pennsylvania

New Jersey

- 2. Michigan
- New York
- 4. Pennsylvania
- 5. Ohio
- 6. Texas
- 7. Massachusetts
- 8. Illinois
- 9. Virginia
- 10. Florida

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

California Florida Illinois Massachusetts Michigan Minnesota New Jersey New Mexico New York Ohio Pennsylvania Tennessee Texas

Washington

SIGNAL PROCESSING

WHAT IS IT? Signal processing is a foundation technology for communications, computing and embedded systems found in devices. It involves a wide range of activities for transmitting, processing and analyzing signals from audio, video, image, and radar, among other signals.

WHAT DOES IT MEAN FOR MASSACHUSETTS? In Massachusetts, signal processing is a major technology focus of industry, and has a strong concentration in patent activities. Its roots began in the defense industry in advancing the use of radar in World War II, which Massachusetts pioneered, through tracking systems for ballistic missiles during the Cold War to today's information-based warfare activities. Today, signal processing technologies extend extensively into the computer and telecommunications sector. Signal processing also remains a key expertise of major federal defense-related research centers and organizations from Lincoln Labs to Draper Labs to MITRE Corporation.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Defense industries, telecommunications, computer hardware/electronic systems, power systems

EXAMPLES OF INDUSTRY LEADERS:

Analog Devices

Raytheon

Teradyne

EMC

Verizon

UNIVERSITY LEADERS:

M.I.T.

Boston University

UMass Amherst

Harvard

WPI

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Florida, Illinois, Massachusetts, New York, Ohio, Pennsylvania, Texas

Technology Industry Presence

Top ten states in number of technology firms, 2003

- 1. California
- 2. Massachusetts
- 3. New York
- 4. New Jersey
- 4. New Jersey
- 5. Texas6. Pennsylvania
- 7. Florida
- 7. Florida
- 8. Illinois
- 9. Connecticut
- 10. Ohio

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. California
- 2. New York
- Texas
- 4. Pennsylvania
- 5. Florida
- 6. Ohio
- 7. Illinois
- 8. Michigan
- 9. Massachusetts
- 10. Indiana

KEY INDUSTRY CLUSTERS:	EXAMPLES OF TECHNOLOGY ACTIVITIES:
Defense industries	RF technologies Micro-wave technologies
Telecommunications	Wireless communications Digital-analog switching
Computer hardware/ Electronic systems	Digital signal transmission, Amplification, Switching, Embedded network systems
Power systems	Voltage/power transmitters,

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

Arizona
California
Florida
Georgia
Illinois
Maryland
Massachusetts
Michigan
New Jersey
New York
Ohio
Pennsylvania
Texas
Washington

COMPUTER SCIENCES

WHAT IS IT? Computer sciences remains a dynamic, fast-paced technology field involving all aspects of computing from software development to databases to information analysis and retrieval to networking to decision-making and data visualization. Computer sciences is at the intersection of many converging technologies, particularly key for collecting, managing, and interpreting the massive sets of data possible today in fields from genomics and proteomics to supply chain management to financial services.

WHAT DOES IT MEAN FOR MASSACHUSETTS? Computer sciences is firmly rooted in the economic landscape of Massachusetts' technology industry base. As the patent data suggests, there are literally hundreds of firms developing key applications and new computer-related technologies. Massachusetts is also home to a number of leading university computer science research programs found at M.I.T., UMass Amherst, Harvard and Boston University, and is home to many federal research centers and labs focusing on computer science related activities.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Computer services

Defense industries

Health care

Financial services

EXAMPLES OF INDUSTRY LEADERS:

Avid Technology

Cognex

EMC

Raytheon

Verizon

UNIVERSITY LEADERS:

M.I.T.

UMass Amherst

Harvard

Boston University

researched for the study: Industry Presence, Talent Generation, and Research Excellence)

LEADING STATES (states ranked highest in all 3 categories

California, Illinois, Massachusetts, Pennsylvania, Texas

- 1. California
- 2. Massachusetts
- 3. Texas
- 4. New York
- 5. Pennsylvania
- 6. Florida
- 7. Illinois
- 8. Virginia
- 9. New Jersey
- 10. Georgia

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. New York
- 2. California
- 3. Pennsylvania
- 4. Texas
- 5. Florida
- 6. Illinois 7. Ohio
- 8. Massachusetts
- 9. New Jersey
- 10. Virginia

KEY INDUSTRY CLUSTERS:	EXAMPLES OF TECHNOLOGY ACTIVITIES:
Computer services	Data storage
Defense industries	Computer modeling and simulation
	Distributed systems
Health care	Computer security
	Computer networking
Financial services	Data mining and information retrieval
	Software applications development

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

California Connecticut Illinois Indiana Maryland Massachusetts Michigan Minnesota North Carolina Ohio Pennsylvania Texas Washington

SENSING, OPTICAL AND ELECTRO-MECHANICAL DEVICES

WHAT IS IT? Central to high-tech manufacturing for advanced instruments, machinery and components are a broad set of technologies that enable measuring, sensing, actuation and the fusion of electrical and mechanical systems in ever more miniaturized

WHAT DOES IT MEAN FOR MASSACHUSETTS? Massachusetts has a long tradition in precision equipment machining, dating back to the 1800's and evolving over several technology transitions into manufacturing of complex industrial products including computers, telecommunications exchanges and switches, electricity transformers, chip-making machines, electro-medical devices and air traffic control systems. The technology area of sensing, optical and electro-mechanical devices is one of the largest clustering of patents found in Massachusetts, led by industry activity. At the university level, Massachusetts is at the cutting edge of many sensing and optical technologies, as well as an emerging leader in micro-electro-mechanical devices (MEMS) and nanotechnology fabrication.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Industrial machinery, computer and communications equipment, medical devices, defense industries

EXAMPLES OF INDUSTRY LEADERS:

Analog Devices Boston Scientific Osram Sylvania Raytheon **Thermo Electron**

UNIVERSITY LEADERS:

M.I.T. Harvard Northeastern **UMass Amherst Tufts**

KEY INDUSTRY CLUSTERS:	EXAMPLES OF TECHNOLOGY ACTIVITIES:
Industrial machinery	Laser devices Sensors and actuators Gas and liquid flow systems
Computer and communications equipment	MEMS devices
Medical devices	Sensors and imaging devices
Defense industries	Radar systems

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Illinois, Massachusetts, Michigan, Ohio, Pennsylvania

Technology Industry Presence

Top ten states in number of technology firms, 2003

- 1. California
- 2. Pennsylvania
- 3. Massachusetts
- 4. New York
- 5. Illinois
- 6. Texas
- 7. Ohio
- 8. New Jersev
- 9. Connecticut
- 10 Michigan

Talent Generation

Top ten states in total degrees awarded, 2002

- 1 California
- 2. New York
- 3 Texas
- 4. Michigan
- 5. Pennsylvania
- 6. Ohio
- 7. Illinois
- 8. Massachusetts
- 9. Florida 10. Indiana

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

California Georgia Illinois Indiana Iowa Maryland Massachusetts Michigan **New Jersey** New Mexico Ohio Pennsylvania Tennessee Texas Washington

ENVIRONMENTAL SCIENCES

WHAT IS IT? Environmental sciences involve understanding the basic physical and biological processes occurring in marine life and oceanography, ecosystems, climate and earth sciences. Its practical applications range from developing new technologies for detecting and monitoring changes in environmental systems to abating or preventing pollution or generation of toxic chemicals to protecting coastal areas to harnessing the potential of environmental processes for creating new sustainable products.

WHAT DOES IT MEAN FOR MASSACHUSETTS? Environmental sciences represent a critical mass of research activity found across university research drivers and non-profit research institutions in Massachusetts, with a particular emphasis on ocean environmental sciences and climate change. While there is not a cluster of industry-led patent activity found in environmental sciences, there is a growing environmental industry presence. Connecting this emerging environmental industry with the growing base of academic research activities in the environmental sciences can provide a competitive advantage.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Environmental engineering and protection, oceanographic industry, fisheries

EXAMPLES OF INDUSTRY LEADERS:

BOC Edwards

CDM

Clean Harbors Environmental Services

Thermo Electron

UNIVERSITY LEADERS:

M.I.T.

Woods Hole

Harvard

UMass Amherst

Boston University

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Illinois, Massachusetts, New York, Texas

Technology Industry Presence

Top ten states in number of technology firms, 2003

- 1. California
- 2. Texas
- Massachusetts
- 4. Pennsylvania
- 5. Connecticut
- 6. New York
- 7. Ohio
- 8. Illinois
- 9. New Jersey
- 10. Florida

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. California
- 2. New York
- Texas
- 4. Pennsylvania
- 5. Illinois
- 6. North Carolina
- 7. Ohio
- Massachusetts
- 9. Michigan
- 10. Virginia

KEY INDUSTRY EXAMPLES OF TECHNOLOGY CLUSTERS: ACTIVITIES: Environmental Water quality research engineering Green chemistry

Oceanographic industry (often with strong defense connections for naval activities and increasingly homeland security

and protection

Fisheries

applications)

Integrated sensing and information systems

Oceanographic and marine science research

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

Arizona California Colorado Florida Georgia Illinois Maryland Massachusetts Michigan Minnesota New Jersey New York Oregon Rhode Island Texas Virginia Washington Wisconsin

GENOMICS AND PROTEOMICS

WHAT IS IT? Genomics and proteomics involves understanding the structure and function of genes and proteins, holding the potential to identify major new therapeutic approaches to treating diseases. This advanced field of biotechnology represents an area of technology convergence with computational biology and bioinformatics involving the use of advanced, computer-aided modeling, algorithms, pattern discovery, and data mining, visualization and management to infer information about the role of a gene or protein.

WHAT DOES IT MEAN FOR MASSACHUSETTS? The major position of Massachusetts in biotechnology is based on the broadbased strengths found in genomics and proteomics found across industry, teaching hospitals and university research institutions. Having both a strong presence in patent activity and federal research grant activity allows Massachusetts to be well-positioned to take advantage of this fast-paced, evolving field where there are connections between product development and basic research discoveries.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Electronics, medical devices, metalworking, paper converting, plastics, textiles and apparel

EXAMPLES OF INDUSTRY LEADERS:

Genzyme

Millennium Pharmaceuticals New England Biolabs Partners HealthCare System

UNIVERSITY LEADERS:

Harvard

M.I.T.

UMass Medical Center

Tufts

UMass Amherst

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Massachusetts, New York, North Carolina, Pennsylvania, Texas

Technology Industry Presence

Top ten states in number of technology firms, 2003

- 1. California
- 2. Massachusetts
- 3. Maryland
- 4. New Jersey
- 5. Pennsylvania
- 6. New York
- 7. North Carolina
- 8. Illinois
- 9. Texas
- 10. Washington

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. California
- 2. Texas
- 3. New York
- 4. Pennsylvania
- 5. Illinois
- Ohio
- 7. Massachusetts
- 8. North Carolina
- 9. Michigan 10. Virginia

KEY INDUSTRY CLUSTERS:

Biotechnology industry involving broad range of activities from commercial research, diagnostics and new therapeutics development

Pharmaceutical industry

EXAMPLES OF TECHNOLOGY ACTIVITIES:

Bioinformatics

Gene expression and regulation

Gene therapy

Micro-array technologies

Protein analysis

RNA interference (gene silencing)

Systems biology

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

California Connecticut Maryland Massachusetts Missouri New Jersey New York North Carolina Pennsylvania Texas Washington Wisconsin

DISEASE RESEARCH AND DRUG DISCOVERY

WHAT IS IT? Advanced disease specific research, applying biotechnology related techniques, can lead to discoveries of highly promising biological targets for developing new drug therapies, from traditional chemical drug agents, vaccines and innovative new biological therapies as well.

WHAT DOES IT MEAN FOR MASSACHUSETTS? As a leading center for disease-related research, Massachusetts teaching hospitals and university research institutions offer major opportunities for identifying biological targets and discovering potential drug compounds and innovative biological therapies. At the same time, there is a growing base of pharmaceutical and biotechnology companies for translating these drug discoveries into clinical and commercial use.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Pharmaceutical industry

EXAMPLES OF INDUSTRY LEADERS:

Millennium Pharmaceuticals Partners HealthCare System Sepracor, Inc. Vertex Pharmaceuticals

UNIVERSITY LEADERS:

M.I.T. Harvard Northeastern UMass Amherst Tufts and Research Excellence)

California, Massachusetts, New York, North Carolina,
Pennsylvania, Texas

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation,

Technology Industry Presence

- 1. California
- 2. New Jersey
- 3. Massachusetts
- 4. Pennsylvania
- 5 New York
- 6. North Carolina
- 7. Texas
- 8. Maryland
- 9. Illinois
- 10. Florida

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. California
- 2. New York
- 3. Texas
- 4. Pennsylvania
- 5. Illinois
- 6. Massachusetts
- 7. North Carolina
- 8. Ohio
- 9. Michigan
- 10. Virginia

KEY INDUSTRY CLUSTERS:

DUSTRY EXAMPLES OF TECHNOLOGY ACTIVITIES:

Pharmaceutical industry

Biotechnology industry involved in new therapeutics development

Cluster activities in disease research found in:

Cancer research, Cardiovascular research, Infectious diseases, HIV Neurosciences

Patent activity in drug discovery and development involving: Tumor suppressors, Neurological drug agents, Anti-infectious drug agents, Drug delivery

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

California
Connecticut
Maryland
Massachusetts
Michigan
Missouri
New York
North Carolina
Pennsylvania
Texas
Washington
Wisconsin

BIOMEDICAL DEVICES

WHAT IS IT? Biomedical device technologies involve the convergence of biological processes with materials, electronics and software. The emerging field of biomedical devices is playing into the established and growing health care industry offering major new capabilities from non-invasive techniques to advanced implants and regenerative approaches to new drug delivery approaches.

WHAT DOES IT MEAN FOR MASSACHUSETTS? Massachusetts has a growing base of formal and informal research programs found across university and teaching hospitals that can infuse new technologies into biomedical devices and help position the existing biomedical device industry in Massachusetts for growth.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Biomedical devices

EXAMPLES OF INDUSTRY LEADERS:

ABIOMED

C.R. Bard

Boston Scientific

Codman and Shurtleff, Inc.

Cvtvc

Genzyme Corporation Partners HealthCare System Phillips Medical Systems Smith & Nephew

UNIVERSITY LEADERS:

M.I.T.

Boston University

WPI Bioengineering Institute

KEY INDUSTRY CLUSTERS:	EXAMPLES OF TECHNOLOGY ACTIVITIES:
Biomedical devices	Bioprocessing
	Imaging
	Non-invasive technologies
	Tissue engineering

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Massachusetts, Pennsylvania

Technology Industry Presence

Top ten states in number of technology firms, 2003

- 1. California
- 2. Massachusetts
- 3. New Jersey
- 4. New York
- 5. Pennsylvania
- 6 Minnesota
- 7. Florida
- 8. Maryland
- 9 Illinois
- 10. Connecticut

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. California
- 2. Texas
- 3. New York
- 4. Pennsylvania
- 5. Michigan
- 6. Illinois
- 7. Ohio
- 8. Massachusetts
- 9. Virginia

California

10. North Carolina

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

Georgia Maryland Massachusetts Michigan Missouri North Carolina Ohio Pennsylvania Texas Washington

RENEWABLE ENERGY

WHAT IS IT? Renewable energy is involved in developing advanced technologies for harnessing alternative energy generating processes found in chemical reactions, solar power and wind power which do not rely on non-renewable natural resources nor degrade the environment. It draws upon cross-cutting technology areas from polymer research to green chemistry to microbiology.

WHAT DOES IT MEAN FOR MASSACHUSETTS? Renewable energy is an emerging field of technology applications in Massachusetts with a growing base of industry activities and many niche areas of research focus such as biobatteries converting organic waste matter to energy and the use of polymer processing for developing solar power

LEAD PLAYERS

MASSACHUSETTS' LEADERS

KEY INDUSTRY CLUSTERS:

Alternative energy generation

EXAMPLES OF INDUSTRY LEADERS:

Fuel cell-related companies: Ballard, Acumentrics, Nuvera, ElectroChem, ZTEK, Dais-Analytic

Solar power companies: Evergreen Solar, Konarka Technologies, RWE Schott Solar

Wind power companies: SecondWind, Cape Wind Associates

UNIVERSITY LEADERS:

M.I.T.

UMass Amherst UMass Boston WPI

KEY INDUSTRY CLUSTERS:

Alternative energy generation companies

EXAMPLES OF TECHNOLOGY ACTIVITIES:

Photovoltaic

Biobatteries

Wind power

Fuel cells

LEADING STATES (states ranked highest in all 3 categories researched for the study: Industry Presence, Talent Generation, and Research Excellence)

California, Illinois, Massachusetts, New York, Pennsylvania, Texas

Technology Industry Presence

Top ten states in number of technology firms, 2003

- 1. Texas
- 2. California
- 3. Massachusetts
- 4. New York
- New York
 Pennsylvania
- 6. Colorado
- 7. Connecticut
- New Jersev
- 9. Florida
- 10 Illinois
- 10. Illinois

Talent Generation

Top ten states in total degrees awarded, 2002

- 1. California
- 2. New York
- 3. Texas
- 4. Pennsylvania
- 5. Michigan
- 6. Ohio
- 7. Illinois
- 8. Massachusetts
- 9. Florida
- 10 Indiana

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

Arizona
California
Georgia
Illinois
Maryland
Massachusetts
Michigan
New Jersey
New York
Ohio
Pennsylvania
Texas

NANOTECHNOLOGY FABRICATION

WHAT IS IT? Nanotechnology fabrication involves developing new structures based on the precise control of materials architecture at the molecular or atomic level. Nanofabrication has been heralded as a revolutionary advance in manufacturing a next generation of products offering unique properties and decreasing time to market, energy consumption and environmental costs. In particular, nanotechnology addresses the need to scale down the size of chips, the basic building block of our IT-driven economy.

WHAT DOES IT MEAN FOR MASSACHUSETTS? The prospects of nanotechnology to redefine the leading-edge of future manufacturing is real and Massachusetts with its history of precision machining and complex products development has an opportunity to be a leading center for nanofabrication, based on the growing strength of its university research programs. Translating those research competencies in the future into industry competencies will require a focused program of collaboration and strategic alliances.

LEAD PLAYERS

MASSACHUSETTS' LEADERS

UNIVERSITY RESEARCH PROGRAMS:

Many universities in Massachusetts are doing work in nanofabrication—with Harvard, UMass Amherst and M.I.T. among the leading university recipients of nanotechnology research funding—with a particular focus on nanoelectronics, including:

Harvard's Nanoscale Science and Engineering Center in partnership with M.I.T. is a major NSF nanotechnology-funded research center.

UMass Amherst, is advancing the use of polymer templates for nanofabrication to create the pattern of a device's structure, and recently launched the MassNanoTech Center.

M.I.T. has a number of leading nanotechnology research centers including the Nanostructures Laboratory, Soldier Nanotechnologies Center and NanoMechanical Technology Lab.

Northeastern leads an NSF-supported Industry-University Cooperative Research Center focused on contamination and fabrication.

UMass Lowell Institute on Nanoscience and Engineering Technology.

Boston University is focusing on bionanotechnology and has a number of research grants in that area.

KEY INDUSTRY CLUSTERS:

Advanced materials

Polymer templating for nanofabrication
Nanomagnetics

Computer and communications hardware

Nano contamination
Nanoelectronics

RESEARCH EXCELLENCE (states receiving highest level of National Nanotechnology Institute awards from the National Science foundation, FY 2001 to FY 2003)

California, Illinois, Indiana, Massachusetts, Michigan, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Texas

Research Excellence

States mentioned either by leading institution (Top Ten) or U.S. News reputation and NSF funding by state in alphabetical order

California Illinois Indiana Massachusetts Michigan New Jersey New York North Carolina Ohio Pennsylvania Texas

Note: Nanotechnology fabrication, as a very early stage technology, lacks sufficient data for analysis of industry presence and talent generation.